Acetazolamide-induced cerebral and ocular vasodilation in humans is independent of nitric oxide.

نویسندگان

  • Barbara Kiss
  • Susanne Dallinger
  • Oliver Findl
  • Georg Rainer
  • Hans-Georg Eichler
  • Leopold Schmetterer
چکیده

Acetazolamide, a carbonic anhydrase inhibitor, is used orally in the treatment of primary and secondary open-angle glaucoma and induces ocular and cerebral vasodilation. Several in vitro studies have shown that carbonic anhydrase pharmacology and thel-arginine-nitric oxide (NO) pathway are closely related. We investigated the role of NO in acetazolamide-induced vasodilation on cerebral and ocular vessels in 12 healthy subjects in the presence or absence of N G-monomethyl-l-arginine (l-NMMA), a NO synthase inhibitor, and in the presence or absence ofl-arginine, the precursor of NO. Acetazolamide was administered after pretreatment with eitherl-NMMA or placebo and eitherl-arginine or placebo. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation. In addition, mean blood flow velocity (MFV) in the middle cerebral artery (MCA) and ophthalmic artery (OA) was measured with Doppler sonography. Acetazolamide increased ocular fundus pulsation amplitude (FPA; +27%, P < 0.001) and MFV in the MCA (+38%, P < 0.001) and in the OA (+19%, P = 0.003). Administration of l-NMMA alone reduced FPA (-21%, P < 0.001) and MFV in the MCA (-11%, P = 0.030) but did not change MFV in the OA. All hemodynamic effects ofl-NMMA were reversed byl-arginine. However, neitherl-NMMA norl-arginine altered acetazolamide-induced changes in cerebral or ocular hemodynamic parameters. The present data indicate that acetazolamide-induced hemodynamic changes are not mediated by NO. Which mediators other than NO are involved in the hemodynamic effects as induced by carbonic anhydrase inhibitors remains to be elucidated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AREGU June 45/6

Kiss, Barbara, Susanne Dallinger, Oliver Findl, Georg Rainer, Hans-Georg Eichler, and Leopold Schmetterer. Acetazolamide-induced cerebral and ocular vasodilation in humans is independent of nitric oxide. Am. J. Physiol. 276 (Regulatory Integrative Comp. Physiol. 45): R1661–R1667, 1999.—Acetazolamide, a carbonic anhydrase inhibitor, is used orally in the treatment of primary and secondary open-a...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans.

It is well known that changes in [Formula: see text] or[Formula: see text] strongly influence cerebral and ocular blood flow. However, the mediators of these changes have not yet been completely identified. There is evidence from animal studies that NO may play a role in hypercapnia-induced vasodilation and that NO synthase inhibition modulates the response to hyperoxia in the choroid. Hence we...

متن کامل

Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase.

OBJECTIVE Mitochondrial depolarization after ATP-sensitive potassium channel activation has been shown to induce cerebral vasodilation by the generation of calcium sparks in smooth muscle. It is unclear, however, whether mitochondrial depolarization in endothelial cells is capable of promoting vasodilation by releasing vasoactive factors. Therefore, we studied the effect of endothelial mitochon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 276 6  شماره 

صفحات  -

تاریخ انتشار 1999